Edge Debate 86: Urban Form, Density & Microclimate – 13th November 2018

Improving Urban Meteorological Information for the Building Scale

Sue Grimmond¹, Ting Sun¹, Fredrik Lindberg², Jie Xiong^{1,3,4}, Denise Hertwig¹, Yihao Tang¹, Runming Yao^{3,4}

¹ Department of Meteorology, University of Reading ² Gothenburg University ³ School of the Built Environment, University of Reading ⁴ Chongqing University

Acknowledgements: EPSRC LoHCool, Met Office/Newton Fund CSSP- China, NERC AirPro, Numerous co-authors of Papers mentioned

Meteorological data

- Typical Meteorological Year: used to run Building Energy Models
- Data sources

University of Reading

- Observations
- Future Climate models

Interdependent energy relationships between buildings at the street scale

Julie Futcher^a, Gerald Mills^b and Rohinton Emmanuel ^{oc}

Energy use and height in office buildings

RESEARCH PAPER

Daniel Godoy-Shimizu^a, Philip Steadman^a, Ian Hamilton [©]^a, Michael Donn [©]^b, Stephen Evans [®]^a, Graciela Moreno^c and Homeira Shayesteh^d

Natural ventilation in cities: the implications of fluid mechanics

Jiyun Song ^(a)^{a,j}, S. Fan^b, W. Lin ^(a)^c, L. Mottet ^(a)^{d,j}, H. Woodward^e, M. Davies Wykes ^(a)^a, R. Arcucci ^(a)^f, D. Xiao ^(a), J.-E. Debay^a, H. ApSimon^e, E. Aristodemou^g, D. Birch^c, M. Carpentieri^c, F. Fang^d, M. Herzog^h, G. R. Huntⁱ, R. L. Jones^b, C. Pain^d, D. Pavlidis^d, A. G. Robins^c, C. A. Short^j and P. F. Linden ^(a)^a

Challenges in the low-carbon adaptation of China's apartment towers

C. Alan Short ⁽¹⁾a, Jiyun Song ⁽¹⁾a,^b, Laetitia Mottet ⁽¹⁾a,^c, Shuqin Chen^d, Jindong Wu^d and Jian Ge^d

Hertwig et al. (in prep)

Hierarchical climatic zoning method for energy efficient building design

Xiong et al. (in review)

Reading

Xiong et al. (in review)

Sub- zone	Province	City	Humidity	Radiation	Wind	Cooling Load (kWh m ⁻²)	Heating Load (kWh m ⁻²)	Non-heating and cooling period (h)	Mean ± s.d. cooling load
A1	Hubei	Wuhan	RH1	RaZ	WS3	95.5	32.0	3044	82.8 ± 11.6
	Anhui	Hefei	RH2*	Ra1	WSZ	75.6	43.3	3192	
	Jiangsu	Nanjing	RH2*	Ra1	WSZ	73.1	43.0	3557	
A2	Hunan	Changsha	RHZ	RaZ	WSZ	81.5	28.2	3271	
	Zhejiang	Hangzhou	RH2	Ra1	WSZ	73.6	28.8	3592	
	Shanghai	Shanghai	RH2	Ra1	WSZ	68.9	27.0	4067	
A3	Fujian	Nanping	RHI	Ra1	WS4	100.0	5.7	5437	
	Jiangxi	Ji-an	RH1	Ra2*	WS3	96.7	18.8	4869	
	Chongqing	Chongqing	RHI	Ra3	WS4	79.9	12.9	3808	
B1	Henan	Xinyang	RH2	Ra1	WS2	61.9	46.1	4779	65.3 ± 5.8
	Jiangsu	Nantong	RH1	Ra1	WSZ	60.1	35.9	5106	
B2	Hubei	Yichang	RH2	Ra3	WS4	72.0	30.7	3354	
	Zhejiang	Zhoushan	RH1	Ra1*	WS1	71.2	20.6	5475	
	Sichuan	Yibin	RHI	Ra3*	WS4	61.3	9.1	4248	
C1	Shanxi	Hanzhong	RH1	Ra2*	WS4	42.7	43.6	4833	43.8 ± 2.9
C2	Sichuan	Chengdu	RHI	Ra3	WS4	47.1	22.0	4462	
	Guizhou	Qiandongnan	RH1	Ra3*	WS3	41.7	30.8	5237	

Urban Multi-scale Environmental Predictor

- Coupled modelling system: 1D and 2D models
- Street canyon to city scale (10⁰-10⁵ m)

Lindberg et al. 2018: Environmental Modelling & Software 99, 70-87

Reading

Ward and Grimmond 2017: Landscape and Urban Planning 165, 142–161

New York City: Spatial data

Anthropogenic Heat Fluxes

Turbulent Sensible Heat fluxes

Air Temperature

Urban Form, Density and Microclimate: How Must Planning and Design Chang Average air temperature during a heat wave event 6 to 8 July

Sun et al. in prep.

Final Comments

- Feedbacks between urban form and function improve the TMY data
 - Potential for changes at a range of scales
- Meteorological models still need improvements
 - Wind speed around tall buildings
 - Realistic settings
- Tools that are usable for research and practitioners (e.g. UMEP)
 - e.g. Public Health in NY
 - London –future planning

2 pm DOY 190, 2010 Mean radiant temperature

Ward and Grimmond 2017: Landscape and Urban Planning 165, 142–161 Design Change? | Sue Grimmond |C.S.Grimmond@reading.ac.uk Lington Ling

Lindberg et al 2018